MSE250 – Materials Selection

Updated 16 December, 2011

Approach

This document aims to give an overview of <u>all materials</u> (synthesis, structure) and <u>all characteristics</u> (properties) discussed in the course. From these two categories, one can then determine what kinds of applications a particular material may be suitable for (performance). A chart has been provided. It may be useful for you to circle the property boxes in each column that are most useful for a particular material. Take your time to carefully consider each property on the list for each material. Not all properties may be important or defined for all materials, but you may find certain relationships that you did not think of before.

It is imperative that you are very clear and precise in your definitions of each of the property terms. Also, there are many more materials than properties. If I'm missing some, please let me know.

Materials

Metals

Metals in general

BCC metals (e.g. Fe, steel) FCC/HCP metals (e.g. Al)

Cold-worked metals

Solid-solution metals (alloys) in general

Metals with small grain size Metals with large grain size Fully recrystallized metals

Polished metals

Case-hardened metals

Shot-peened metals

Noble metals (e.g. Au, Pt, Ti) Reactive metals (e.g. Zn, Mg)

Pure austenite

Pure ferrite (v. low C content)

Fine/coarse pearlite, bainite, martensite, spheroidite,

tempered martensite

Stainless steels (bone plates)

Cobalt-based alloys

Ti/Ti alloys

Ceramics

Ceramics in general Polished ceramics

Ionic ceramics (e.g. salt, Al₂O₃)

Covalent ceramics (e.g. silicates/glasses, diamond, graphite)

Fused porous silica fibers (shuttle tiles)

Tempered glass

Zirconia (orthopedics)

Alumina (orthopedics)

Polymers

Thermoplasts in general Amorphous thermoplasts

Semi-crystalline thermoplasts

Thermosets

Phenol-formaldehyde (Bakelite®; billiard balls)

Polypropylene (ice cube tray) Polystyrene (coffee cup)

Lightly-crosslinked elastomers (rubber band)

Heavily-crosslinked elastomers (car tire)

PVC (piping)

Ultra-high molecular weight PE (UHMWPE; cartilage, spine, ankle, knee replacements)

PMMA (Plexiglass; bone cement, eye lenses)

PDMS (silicone; elastomer; ligament joints; blood

vessels; facial implants)

Composites

Concrete (reinforced, prestressed)

Cermets (metal-cutting tools; machining)

Carbon black (ceramic in rubber; tires; running shoes)

Dispersion strengthened composites (metal-matrix

composites)

Epoxy-glass fiber composite (e.g. fiberglass; pole vault)

Epoxy-aramid fiber composite (e.g. non-tear, vests, cases)

Epoxy-carbon fiber composite (e.g. aircraft, structural)

Pyrolytic carbon (heart valve)

Material Characteristics						
Mechanical properties Strength / hardness						
Stiffness / modulus of elasticity, E						
Ductility / brittleness						
Toughness / modulus of resilience						
Viscoelasticity						
Anisotropy						
Density						
Specific strength						
Specific stiffness						
Porosity						
Fatigue/failure characteristics						
Fracture characteristics / toughness						
Wear resistance (scratching, friction)						
Cyclic loading behavior						
Creep						
Corrosion resistance						
Thermal properties						
Effect of heating on microstructure						
Thermal expansion						
Thermal conductivity						
Effect on mech. properties (above)						
T _g / T _m						
Other						
Biocompatibility						
Chemical reactivity (inertness)						
Electrical characteristics						
Cost						
			1			