MSE250 Final Exam Overview / Review

Updated 16 December, 2011

Polymers	Complete the second discussion handout on structure-property relationships of polymers. As you are completing each graph, keep in mind the physical mechanisms (bonding, molecular structure/configuration) that are bringing about these relationships. Temperature and time dependence are key. What is distinctive about the graphs for each class of polymer? Compare your results to the posted solutions.	
	Rank the T_g of the following from low to high:PVC LDPE, PP, PET _{ajeuo}	C, HDPE, polycarbonate, PS,
Composites	Draw a chart of the three main types of composites, and their subtypes. What ar some common materials used in each type of composite?	
	What is the rule of mixtures? Why is it the upper b composite's properties?	ound (or "best" case) for a
	What is the main purpose of using composites? Wh component confer on the whole material? Which co (an)isotropic properties?	nat properties does each omposites result in
What are three reasons that effective fibers are thin		and long?
	Draw a schematic graph of how the specific strengt change as fiber length goes from discontinuous to c mind, can you recognize the form of the equations specific stiffness of fiber composites, without being to which case?	h of a composite would continuous. With this in for specific strength and told which equation applies
	How do glass, graphite, and aramid fibers compare specific strength, stiffness, and ductility? Suggest us each type of fiber.	to each other in terms of ses for composites containing
Corrosion	Two metals (A and B) are connected by a wire, and containing its own ions. B is has a higher reactivity as the anode/cathode? Can you write the simple rea electrode?	l each is placed in a solution than A. Which will function action of what happens at each
	What are the six common types of metal corrosion environment where each type of corrosion could ta	? Think of a system or ke place.
	What is the dependence of corrosion rate on area of exposed surface?	
	Where does corrosion occur?? ©	

Electrical Properties	Can you explain why materials have an electronic band structure?	
	What is the significance of the Fermi-Dirac probability function, $f(E)$? What is the Fermi energy (Fermi level, E_F)? Draw $f(E)$ for T = 0K, and for T > 0K.	
	Write the atomic energy levels for Li, Ca, Al, N, and Si. Based on their valence orbital and what you know about the electronic properties of these materials (metal, insulator, semiconductor), draw a predicted band structure for each one.	
	What is a valence band? conduction band? band gap? Core band?	
	How does one use a material's electronic structure to determine whether a material is a conductor, semiconductor, or insulator?	
	All metals are good conductors, but not all good conductors are metals. Give an example of a conductive material that is non-metallic.	
	How does resistivity of metals, intrinsic semiconductors, and extrinsic semiconductors depend on temperature? Explain both the trends as well as the physical mechanisms that give rise to these property trends.	
	Draw the electronic bandstructure of intrinsic, n-type and p-type semiconductors. With these three images on the page and without looking at your notes, write down an expression for conductivity for each type of semiconductor (think Arrhenius equation!).	
	How would the conductivity of a metal alloy compare to that of a dispersion- strengthened composite of the same bulk metal? Why?	
	Given bulk semiconductor element(s) and an impurity, can you, using a periodic table, determine whether the resulting extrinsic semiconductor would be n-type or p-type?	

General comments

This review guide does not cover equations or example problems in homework/class, but should prepare you well for understanding all the concepts needed in this course; consult your other study sources for the "complete picture".

The final exam will take place on Tuesday, December 20 from 10:30am – 12:30pm. It will be closed-book, closed-notes. You will be provided with necessary equations, but no labels indicating the meaning of those equations. A calculator and ruler are allowed.

The significance of study sources, with the most important being first, should be:

Lecture notes Quiz 3/ homework Textbook (use wisely) Discussion handouts

Email me at <u>tanaaron@umich.edu</u> regarding questions or to set up a meeting time/place. Good luck!